簡介
MFIA
簡介
蘇黎世儀器的MFIA是一款數位阻抗分析儀和精密LCR表。它為1 mHz至500 kHz的頻率範圍內(可升級擴展至5 MHz)的阻抗測量建立了新的標準。MFIA的基本精度高達0.05%,並且量程極寬,覆蓋從1 mΩ至1 TΩ的範圍。它還具有測量重複性高和溫度漂移小的特點。每台MFIA都附帶LabOne用戶界面和MFITF阻抗測試夾具。
應用
多設備同步
使用多設備同步(MDS)功能,您可以把多台MFIA變成一台多通道設備使用:
硬體特點
前面板接口
儀器前面板有1 個電流信號輸入、1 個差分電壓輸入、1 個差分信號輸出、2 個可作為參考輸入的輔助輸入和4 個輔助輸出。對於抗干擾能力要求高的實驗,信號輸入和輸出既可以選擇單端模式,也可以選擇差分模式。接地方式可以是儀器接地或信號輸入的BNC遮蔽層接地。
後面板接口
後面板提供了更多BNC 接口,包括2 個觸發輸入、2 個觸發輸出以及10 MHz 同步時鐘的1 個輸入和1 個輸出。以及1 個可訪問所有DIO 通道的SCSI 接口。儀器可以使用90 - 240 V 伏交流電源或12 V 的直流電源(例如使用外部電池組),以便切斷接地迴路。
重複性高,啟動迅速
儀器的溫度變化會嚴重限制啟動速度和測量的可重複性。從上面的啟動漂移圖和頁面底部的電抗圖中可以看出,MFIA 在這兩個方面的表現都非常出色。儀器通電25 s 後即可開始測量。
電壓和電流測量
MFIA 支持電壓測量和電流測量。模擬前端擁有可變輸入阻抗和交流/直流耦合選擇,以及高頻過採樣技術,來確保優越的鎖相性能和波形的高保真度。
LabOne 軟體
MFIA 配有 LabOne 儀器控制軟體,並運行嵌入式數據和網絡服務器,可在任何網絡瀏覽器上運行圖形化操作界面。只需通過以太網將MFIA 添加到您的本地網絡或直接通過USB 連接,將儀器地址輸入您的網絡瀏覽器,即可訪問LabOne。只需點擊一下鼠標,即可將每個工具的數據儲存為矢量圖或純數據文件。支持在其他軟體中執行進一步分析,可導出如ZView ®、MATLAB ®、CSV和HDF5格式的文件。原始數據也可在時域或頻域上使用基本光標和統計功能進行分析。
參數掃描儀
用戶能夠自由調整參數掃描儀的掃描步長,支持線性或對數方式,在指定範圍內進行掃描,以實現自動化測量。而且可以對頻率、偏置電壓或測試信號幅值進行自動化掃描。各種應用模式可幫助用戶以最佳設置進行測量,並在最短的測量時間內獲得最精確的結果,而無需進行繁瑣的手動調整。
上面的例子的兩張圖是1 GΩ 電阻器從100 Hz到5 MHz 掃頻結果。上面那張圖顯示阻抗的絕對值|Z| 和電阻Rp的關係。下面那張圖顯示,在整個掃描範圍內雜散電容Cp 的測量值保持恆定為約30 fF。同時,也可以選擇顯示其他參數。
數位窗口
數位顯示工具可自定義顯示測量值和參數類型,可自行選擇相關顯示參數。可以同時查看阻抗值、此時的電壓和電流,以及該模式下的參數(L、C、R 等)。
繪圖儀和軟體觸發
繪圖儀和軟體觸髮用於分析時域測量數據和模型參數。繪圖儀可以連續顯示多個數據流。對於10 s 的窗口長度,時間分辨率可達10 μs。基於多種不同的內部和外部觸發條件,軟體觸發可實現並顯示單次觸發。
LabOne 繪圖儀可以連續顯示阻抗數據。上圖顯示了100 mΩ 電阻在20 min內的數據。直方圖顯示的標準偏差僅為6 μΩ
置信度指示器
軟體向用戶提供測量數據之前都會估算置信度。一旦測量受到干擾,譬如抑制、增益誤差、補償誤差等因素的影響,將出現警告提示,並且告知用戶數據可能不准確。根據警告的類型,可給出建議以改善結果。
智能補償
為了提高測量精度,需要補償由測試夾具或儀器與被測對象之間的連接電纜導致的寄生效應。LabOne 智能補償功能為用戶提供逐步指導和有效的工作流程,以實現最佳測量效果。除了短路開路(SO) 和短路開路負載(SOL) 補償之外,還可提供各種其他補償方案。在數據被採納以校正測量誤差之前,每個補償步驟都會被驗證,並且為用戶提供反饋。
精度和測量範圍
下面的電抗圖顯示了儀器在特定頻率和阻抗範圍的測量精度。白色區域顯示了1 mHz-500 kHz,1 Ω-1 MΩ 範圍內的精度為0.05%(高頻時精度有所變化)。當測量範圍為10 mΩ 和1 GΩ,精度為0.1% 和1%。上述範圍之外,也可進行重複測量,只是精度可能會在1%左右。
在測試頻率接近工頻時,低頻高阻抗測試是非常難的。適當的樣品遮蔽、梳妝濾波器以及直流(電池)供電都將確保您得到最精確的結果。
常規
頻率範圍 |
1 mHz - 5 MHz |
頻率分辨率 |
1 µHz |
基本精度 |
0.05% (1 mHz - 500 kHz) |
基本溫度穩定性 |
200 ppm/K |
測試信號電平 |
0 V - 2.1 Vrms; |
解調器頻寬 |
276 µHz - 206 kHz |
DC 偏置信號電平 |
2T: ±10 V, 4T: ±3 V |
補償 |
SO, SOL, LLL, SL, L, OL |
測量參數、範圍和典型精度
阻抗 Z |
1 mΩ - 1 TΩ, 0.05% |
導納 Y |
1 pS - 1 kS, 0.05% |
電壓 V |
0 V - 3 V, 1% |
電流 I |
0 mA - 10 mA, 2% |
相位Θ Z、 Θ Y、 Θ V、 Θ I |
±180°, 10 µ°分辨率 |
電阻R S、 R P 1 |
1 mΩ - 1 TΩ,最大(10 µΩ,0.05%) |
電容C S、 C P 1 |
10 fF - 1 F,最大(10 fF,0.05%) |
電感L S、 L P 1 |
100 nH - 1 H,最大(10 nH,0.05%) |
DC 電阻R DC |
1 mΩ - 10 GΩ,2% |
電抗 X |
1 mΩ - 1 TΩ, 0.05% |
電導G,電納 B |
1 nS - 1 kS,最大(100 nS,0.05%) |
損耗係數 D |
10 -4 - 10'000 |
Q 因子 |
10 -4 - 10'000 |
LabOne 參數掃描儀
掃描參數 |
頻率、測試信號幅值、偏置電壓等 |
掃描點 |
2 - 100'000 |
掃描分辨率 |
任意,起始值、停止值和掃描點數確定 |
顯示參數 |
Z X、Z Y、Z、Z Θ、V X、V Y、V R、V Θ、I X、I Y、I R、I Θ、模型參數1/2、頻率、輔助輸入 |
顯示選項 |
單圖、雙圖(如波特圖)、多軌跡圖 |
應用模式 |
阻抗、頻率響應分析儀、3-omega 等 |
掃描模式 |
順序、二進制、雙向、反向 |
掃描步進模式 |
線性、對數 |
掃描速度 |
20 ms/pt, f > 10 kHz |
其他選單和特點
LabOne 工具組 |
數位視圖、頻譜分析儀、繪圖儀、軟體觸發、示波器 |
APIs |
C、MATLAB、LabVIEW、Python、.Net |
模式 |
2-端子、4-端子 |
置信度指示器 |
抑制、補償、滿溢、下溢 |
輸入範圍控制 |
自動、阻抗、手動 |
測試信號幅值 |
自動、手動 |
頻寬控制 |
自動、手動 |
等效電路模型 |
R p ||C p、R s +C s、R s +L s、GB, DC s、QC s、DL s、QL s |
DCR 測量 |
是 |
測試夾具相容性 |
是 |
一般規格
尺寸 |
28.3 x 23.2 x 10.2 cm; 11.1 x 9.2 x 4 inch |
重量 |
3.8 kg; 8.4 lbs |
電源 |
AC: 100 to 240 V; DC: 12 V, 2 A |
PC接口 |
USB 2.0, LAN 1GbE |
Introduction
The Zurich Instruments MFIA is a digital impedance analyzer and precision LCR meter that sets the new standard for impedance measurements in the frequency range from 1 mHz to 500 kHz (extended to 5 MHz when upgraded). The MFIA has a basic accuracy of 0.05% and operates over a measurement range spanning from 1 mΩ to 1 TΩ. It is also characterized by a high measurement repeatability and small temperature drift. Every MFIA comes with the LabOne user interface and with the MFITF Impedance Test Fixture.
Applications
With multi-device synchronization (MDS) you can operate multiple MFIAs as a single multi-channel device:
Hardware
Front panel interface
The front panel of the MFIA features 1 current signal input, 1 differential voltage input, 1 differential signal output, 2 auxiliary inputs that can work as reference inputs, and 4 auxiliary outputs. Both signal inputs and outputs can be operated in single-ended and differential mode for experiments that require extra noise immunity. The signal ground can be referenced to the instrument ground or to the BNC shield of the signal inputs.
Back panel interface
The back panel offers additional BNC connectors comprising 2 trigger inputs, 2 trigger outputs, and 1 input and 1 output for 10 MHz clock synchronization. Moreover, a SCSI connector offers access to all DIO channels. The units can be operated with standard 90 - 240 V mains supply or by an external 12 V DC power supply (e.g., an external battery pack) to break up ground loops.
High repeatability and fast start-up
Temperature changes of the instrument can severely limit start-up speed and measurement repeatability. The MFIA performs exceptionally well in both aspects, as shown by the start-up drift graph above and by the reactance chart at the bottom of the page. You can start the first measurements after 25 s from turning on the instrument.
Voltage and current measurements
Voltage measurements and current measurements are both supported by the MFIA. The analog front end features variable input impedance as well as AC/DC coupling selection, and the high-frequency analog to digital sampling provides a large oversampling factor. This ensures superior lock-in performance and high signal fidelity for the Scope.
LabOne Toolset
The MFIA comes with the LabOne instrument control software and runs an embedded data and web server that provide the graphical user interface to any web browser. Adding the MFIA by Ethernet into your local network or connect directly by USB, type the instrument address into your web browser, and you have access to the LabOne tool set. Data from each LabOne tool can be stored as vector graphics or as plain data files with a single click. Basic cursor and statistical functions are available for initial data analysis in the time or frequency domain. For further analysis with other software, ZView®, MATLAB® and customized CSV export file formats are all supported.
Parametric Sweeper
The Sweeper enables measurement automation by scanning instrument parameters over a defined range with a freely adjustable number of scan steps, linearly or logarithmically. It is also possible to automatically record the frequency dependence as well as the variation of bias voltages or test signal amplitudes. A variety of application modes enable the identification of the optimal settings to obtain the most accurate results in a minimum time without tedious manual tweaking.
The example above shows a frequency sweep from 100 Hz to 5 MHz of a 1-GΩ resistor in a dual-plot representation. The top plot illustrates the absolute value of the impedance |Z| and the resistance Rp. The bottom plot shows how the stray capacitance Cp remains constant at about 30 fF over the entire scan range. A free choice of additional parameters can be visualized at the same time.
Numerical tab of the LabOne Software
Numeric
The Numeric tool displays all measurement values and model parameters in a user-configurable format. Each impedance unit features simultaneous views of the impedance value, the underlying current, the voltage measurements, and the model-derived parameters (L,C,R, etc.).
Plotter Tab of the LabOne Software
Plotter and SW Trigger
The Plotter and Software Trigger are tools for the analysis of measurement data and model parameters in the time domain. The Plotter can display multiple data streams continuously. For a window length of 10 s, the time resolution goes down to 10 μs. The Software Trigger captures and displays individual shots based on different internal and external trigger conditions.
The LabOne Plotter displays impedance data continuously. The above plot shows data from a 100-mΩ resistor over 20 minutes. The histogram indicates a standard deviation as small as 6 µΩ.
Confidence Indicators
Confidence Indicator
All measurement data pass a confidence estimation before appearing in the LabOne tools. Whenever the measurement is compromised by suppression, gain error, or compensation error a warning flag is raised to signify that the data might be inaccurate. Depending on the type of warning, suggestions are provided to improve the measurement result.
Compensation sequence
Compensation Advisor
In order to achieve a high measurement accuracy, parasitic effects caused by the test fixture or cabling between the instrument and the DUT need to be compensated. The LabOne Compensation Advisor provides step-by-step guidance and an efficient workflow to achieve maximum measurement performance. In addition to Short-Open (SO) and Short-Open-Load (SOL) compensation, a variety of alternative compensation schemes are offered. Each compensation step is validated and feedback is provided before data are taken to correct for measurement errors.
Accuracy and Ranges
The reactance chart presented below indicates the instrument accuracy for given frequency and impedance values. In the wide core area indicated in white, a 0.05% accuracy is specified between 1 mHz and 500 kHz, and 1 Ω and 1 MΩ (with limitations towards higher frequencies). The measurement range extends further with reduced specified accuracy of 0.1% and 1% to cover a measurement range from 10 mΩ to 1 GΩ. Even outside of this range, repeatable measurements are possible but accuracy might drop below 1%.
Measuring high impedances at low frequencies can be particularly challenging when values have to be obtained close to the line frequency. Adequate sample shielding along with a sinc filter and the possibility for battery operation will provide the most accurate results.
Dimensions | 28.3 x 23.2 x 10.2 cm; 11.1 x 9.2 x 4 inch |
Weight | 3.8 kg; 8.4 lbs |
Power supply | AC: 100 to 240 V; DC: 12 V, 2 A |
Interface | USB 2.0, LAN 1GbE |
Frequency range | 1 mHz to 5 MHz |
Frequency resolution | 1 µHz |
Basic accuracy | 0.05% |
Basic temp. stability | 200 ppm/K |
Test signal level | 0 V to 2.1 Vrms; incl. monitoring |
Demodulator bandwidth | 276 µHz to 206 kHz |
DC bias signal level | 2T: ±10 V, 4T: ±3 V |
Compensation | SO, SOL, LLL, SL, L, OL |
Impedance Z | 1 mΩ to 1 TΩ, 0.05% |
Admittance Y | 1 pS to 1 kS, 0.05% |
Voltage V | 0 V to 3 V, 1% |
Current I | 0 mA to 10 mA, 2% |
Phases ΘZ, ΘY, ΘV, ΘI | ±180 deg, 10 µdeg res. |
Resistance RS, RP1 | 1 mΩ to 1 TΩ, max(10 µOhm, 0.05%) |
Capacitance CS, CP1 | 10 fF to 1 F, max(10 fF, 0.05%) |
Inductance LS, LP1 | 100 nH to 1 H, max(10 nH, 0.05%) |
DC Resistance RDC | 1 mΩ to 10 GΩ, 2% |
Reactance X | 1 mΩ to 1 TΩ, 0.05% |
Conductance G, Susceptance B | 1 nS to 1 kS, max(100 nS, 0.05%) |
Loss coefficient D | 10-4 to 10'000 |
Q factor | 10-4 to 10'000 |
Sweep parameters | Frequency, test signal amplitude, bias voltage, etc. |
Sweep points | 2 to 100'000 |
Sweep resolution | Arbitrary, defined by start value, stop value, number of sweep points |
Display parameters | ZX, ZY, Z, ZΘ, VX, VY, VR, VΘ, IX, IY, IR, IΘ, model parameter 1/2, frequency, auxiliary input |
Display options | Single plot, dual plot (e.g., Bode plot), multi-trace |
Application modes | Impedance, frequency response analyzer, 3-omega, etc. |
Sweep modes | Sequential, binary, bidirectional, reverse |
Sweep step modes | Linear, logarithmic |
Sweep speed | 20 ms/pt for f > 10 kHz |
LabOne toolset | Numerical, FFT Spectrum Analyzer, Plotter, SW Trigger, Scope |
APIs | C, .NET, MATLAB, LabVIEW, Python |
Modes | 2-terminal, 4-terminal |
Confidence Indicator | Suppression, compensation, overflow, underflow |
Input range control | Auto, impedance, manual |
Test signal amplitude | Auto, manual |
Bandwidth control | Auto, manual |
Replacement circuit models | Rp||Cp, Rs+Cs, Rs+Ls, G-B, D-Cs, Q-Cs, D-Ls, Q-Ls |
DCR measurements | Yes |
Test fixture compatibility | Yes |
1 Accuracy valid if parameter is the dominant value of the circuit representation.