簡介
SHFQC
簡介
SHFQC 量子測控一體機可以同時進行控制,讀取和快速反饋,多達6 個超導量子位元。它整合了 SHFQA 量子分析儀 和SHFSG 信號產生器,以及其他功能於一身。因為SHFQC 整合了微波信號產生模塊和觸發分配單元,延時低於300 ns 超快反饋,並可直接連接到致冷機啟動實驗。SHFQC 的控制通道有3 種配置以實現不同的實驗需求,即2個,4 個 或6 個控制通道。對於2 個或4 個控制通道的初始配置,用戶可以在線升級至更高的通道配置。
SHFQC 的每一個通道都有一個單獨的定序器,可以編程控制波形的相位和時序。由於其輸出頻率覆蓋直流到8.5 GHz,單個通道即可控製或耦合量子位元,並且可以快速響應讀取信號。讀取通道提供客戶可自定義的積分權重和讀取脈衝儲存單元,數量多達8 個。 SHFQC-16W 升級選配件可使數量翻倍,達到16 個。這為讀取配置提供了更大的自由度,比如可以即時控制和讀取6 個qutrit。
SHFQC 多種高級功能於一身,比如即時示波器,快速掃頻,脈沖級定序等,幫助用戶實現更快地搭建系統,更高效地調諧和測量。
SHFQC 是我們蘇黎世儀器的 Quantum Computing Control System (QCCS) 量子計算測控系統的一部分,可通過 LabOne QCCS 軟體 進行操控,因此非常方便與其他設備聯用,比如 HDAWG 任意波形產生器 (直流至750 MHz)用於磁通脈衝,兩位元門或門電壓控制。對於100 個或以上量子位元的量子系統,SHFQC 可整合到大的量子計算測控系統,並實現局域、全域反饋以及量子糾錯協議。
應用
量子計算應用
支持的量子位元類型
其他應用
一般指標
控制通道數量 |
2/4/6 個訊號產生器通道 |
讀取通道數量 |
1 個量子分析儀通道 |
尺寸 |
449 x 460 x 145 mm (19英寸標準機架) |
重量 |
15 kg (33 lb) |
電源 |
AC: 100-240 V, 50/60 Hz |
連接接口 |
SMA 前後面板,用於觸發,信號和外接時鐘 |
信號產生器和信號輸出
RF輸出數量 |
2/4/6 (可在線升級), 最多6 個 |
頻率範圍 |
DC - 8.5 GHz |
信號頻寬 |
> 1 GHz |
輸出範圍(dBm) |
-30 dBm 到10 dBm |
輸出阻抗 |
50 Ohm |
微波合成器數量 |
3 個(每通道對共享1個) |
D/A 轉換 |
14-bit, 6 GSa/s (3倍內插後) |
輸出電壓噪聲密度 |
-135 dBm/Hz (1 GHz,10 dBm,偏移> 200 kHz) |
輸出相位噪聲 |
-90 dBc/Hz (6 GHz,載波偏移1 kHz) |
輸出電壓準度 |
±(設置值的1 dBm) |
無雜散動態範圍(不含諧波) |
74 dBc (1 GHz, 0 dBm) |
輸出最差諧波強度 |
-40 dBc (1 GHz, 10 dBm) |
波形生成
AWG 內核 |
每通道1個 |
波形垂直分辨率 |
14-bit 模擬+ 2-bit 數位標記 |
波形儲存 |
每通道98 kSa |
定序器指令長度 |
每個AWG 內核32k 指令 |
AWG 採樣率 |
2 GSa/s |
最小波形長度 |
32 Sa |
量子分析儀信號輸出
RF 輸出數量 |
1 |
頻率範圍 |
0.5 - 8.5 GHz |
信號頻寬 |
> 1 GHz |
輸出範圍(dBm) |
-30 dBm to 10 dBm |
輸出電壓噪聲 |
14.1 nV/sqrt(Hz) (@ 6 GHz) |
輸出阻抗 |
50 Ohm |
微波合成器數量 |
1 (與輸入通道共享) |
D/A 轉換 |
14-bit, 6 GSa/s (3倍內插後) |
輸出電壓噪聲密度 |
-135 dBm/Hz (1 GHz,10 dBm,偏移> 200 kHz) |
輸出相位噪聲 |
-90 dBc/Hz (6 GHz, 載波偏移1 kHz) |
輸出電壓準度 |
±(設置值的1 dBm) |
無雜散動態範圍(不含諧波) |
74 dBc (1 GHz,0 dBm) |
輸出最差諧波強度 |
-40 dBc (1 GHz,10 dBm) |
讀取脈衝產生器
讀取脈衝產生器數量 |
1 |
定序能力 |
高級定序,支持循環和動態跳轉,高級觸發控制,時間交錯讀取 |
波形儲存單元1 |
每通道8 個單元,一共32 kSa 儲存 |
振盪器 |
1 (spectroscopy 模式下可配置) |
量子分析儀信號輸入
RF 輸入數量 |
1 |
頻率範圍 |
0.5 - 8.5 GHz |
信號頻寬 |
> 1 GHz |
輸出阻抗 |
50 Ohm |
微波合成器數量 |
1 (與輸出通道共享) |
輸入電壓噪聲 |
1.1 nV/√Hz (@ 3 GHz) |
輸入量程(dBm) |
-50 dBm 到10 dBm (校准後) |
A/D 轉換 |
14-bit,4 GSa/s |
量子位元測量單元
匹配濾波器 |
每通道8 個單元1,一共32 kSa 儲存 |
多態鑑別 |
最多4個鑑別器 |
反饋延遲 |
300 ns (最後一個採樣點進入到第一個採樣點輸出) |
數據記錄器 |
儲存: 2 19 點,平均次數最大2 16 |
示波器 |
儲存: 單通道時, 2 18 復值採樣點; 2通道時, 2 17 復值採樣點;3或4通道時, 2 16 復值採樣點 |
數位標記和触發
數位標記輸出 |
每輸出/輸入通道各一個,SMA 前面板 |
數位標記輸出電壓 |
0 V (低),3.3 V (高) |
數位標記輸出阻抗 |
50 Ohm |
數位標誌輸出上升沿時間 |
300 ps (20% to 80%) |
觸發輸入 |
每輸出/輸入通道各一個,SMA 前面板 |
觸發輸入阻抗 |
50 Ohm / 1 kOhm |
1 所有的儲存單元均可自由配置和觸發。每個單元最優對應4096個複值取樣點。
Introduction
The SHFQC Qubit Controller can control, read out and provide fast feedback on up to 6 superconducting qubits. It integrates the functionality of the SHFQA Quantum Analyzer, the SHFSG Signal Generator and more in a single instrument. With integrated microwave generation, a trigger distribution unit and the ultrafast feedback of 350 ns between all channels, simple microwave connections between the SHFQC and a cryostat are sufficient to start advanced qubit measurements. To provide flexibility for systems with a small number of qubits, the SHFQC comes in three possible configurations, in which either 2, 4, or 6 of the signal generator channels are enabled. For the 2- and 4-channel configurations, additional signal generator channels can be enabled in the field. As a result, the setup is fully software-controlled and can be reconfigured as needed to match the experimental requirements.
SHFQC Qubit Controller
Each control channel of the SHFQC has its own powerful sequencer for creating phase- and timing-programmable waveforms, so that a single SHFQC can control or couple qubits with pulses from DC to 8.5 GHz, and react at any time on measurements from the readout channel. With the SHFQC-16W upgrade option, the readout channel's freely configurable integration weights and readout-pulse memories are doubled from 8 to 16. This provides more flexibility in configuring the readout, e.g. by enabling full real-time control and readout of 6 qutrits.
Advanced features such as a real-time oscilloscope, fast spectroscopy, and the pulse-level sequencing capability allow users to further speed up their system tune-up and measurements.
The SHFQC integrates into the Zurich Instruments Quantum Computing Control System (QCCS) and is intuitively operated through the LabOne QCCS Software. This enables a seamless combination with other instruments such as the HDAWG for fast flux or gate voltage signals up to 750 MHz. Within a larger QCCS, the SHFQC enables access to fast local and global feedback as well as to error correction protocols for 100 qubits and beyond.
Applications
Quantum computing applications
Supported qubit types
Other applications
Highlights
High-fidelity qubit manipulation and readout
Operating over a range that extends up to 8.5 GHz, the SHFQC's double superheterodyne up- and down-conversion scheme relies on filtering rather than on interference, so that it performs over a wider frequency band and with better linearity than standard IQ-mixer-based conversion approaches. This capability is combined with the performance of synthesizers specifically designed for high-fidelity qubit control and readout, offering low phase noise and low timing jitter across the whole output frequency range. As a result, the SHFQC generates spurious-free, stable signals within an instantaneous bandwidth of 1 GHz and without requiring its users to spend time on mixer calibration or system maintenance.
When reading out multiple qubits through resonators coupled to the same readout line, even small spurs can lead to a confusing or smaller readout signal if they are sub-optimally located. The superheterodyne scheme of the SHFQC affords more flexibility on the design of resonator frequencies for frequency-multiplexed qubit readout. Furthermore, the combination with a linear amplification chain allows users to drive all single- and multi-qubit gates within short time intervals and free of distortion. The integrated frequency conversion offered by the SHFQC ensures that qubit control and readout operations realize the full potential of a quantum processor in terms of fidelity.
Efficient workflow and resource handling
The SHFQC's Signal Generator and Quantum Analyzer channels support minimal use of waveform data even when complex signals are required. Users provide the desired signals in the form of pulse descriptions to program the SHFQC in the most memory-efficient manner. Even for many-qubit systems that rely on multiple SHFQCs, this approach ensures that complex tune-up and calibration routines are completed within a minimum of instrument communication time. For example, the support of loops and conditional branching points enables the implementation of active reset in 350 ns as well as more complex quantum error-correction codes; real-time phase and frequency updates make it possible to implement virtual Z gates. With up to 98 kSa waveform memory per channel, the ability to handle up to 32k sequence instructions, and a sampling rate of 2 GSa/s, the SHFQC provides customizable multi-channel AWG signals for qubit control and readout.
Number of control channels | Up to 6 signal generator channels |
Number of readout channels | 1 quantum analyzer channel (1 input and 1 output channel) |
Dimensions | 449 x 460 x 145 mm (19" rack) 17.6 x 18.1 x 5.7 inch |
Weight | 15 kg (33 lb) |
Power supply | AC: 100-240 V, 50/60 Hz |
Connectors | SMA on front and back panel for trigger, signals and external clock 32-bit DIO 2 ZSync LAN/Ethernet, 1 Gbit/s USB 3.0 Maintenance USB |
Number of RF outputs | 6, of which 2, 4, or 6 can be enabled |
Frequency range | DC - 8.5 GHz |
Signal bandwidth | > 1 GHz |
Output ranges (dBm) | -30 dBm to 10 dBm |
Output impedance | 50 Ohm |
Number of synthesizers | 3 (pairs of channels share a synthesizer) |
D/A conversion | 14-bit, 6 GSa/s (after internal 3x interpolation) |
Output voltage noise density | -135 dBm/Hz (1 GHz, 10 dBm, offset > 200 kHz) -140 dBm/Hz (4 GHz, 10 dBm, offset > 200 kHz) -144 dBm/Hz (6 GHz, 10 dBm, offset > 200 kHz) -144 dBm/Hz (8 GHz, 10 dBm, offset > 200 kHz) |
Output phase noise | -90 dBc/Hz (6 GHz, carrier offset 1 kHz) -98 dBc/Hz (6 GHz, carrier offset 10 kHz) -100 dBc/Hz (6 GHz, carrier offset 100 kHz) |
Output level accuracy | ±(1 dBm of setting) |
Spurious-free dynamic range (excl. harmonics) | 74 dBc (1 GHz, 0 dBm) 66 dBc (4 GHz, 0 dBm) 60 dBc (6 GHz, 0 dBm) 65 dBc (8 GHz, 0 dBm) |
Output worst harmonic component | -40 dBc (1 GHz, 10 dBm) -40 dBc (4 GHz, 10 dBm) -38 dBc (6 GHz, 10 dBm) -36 dBc (8 GHz, 10 dBm) |
AWG cores | 1 per channel |
Waveform vertical resolution | 14-bit analog + 2-bit marker |
Waveform memory | 98 kSa per channel |
Sequence length | 32k instructions per AWG core |
AWG sampling rate | 2 GSa/s |
Minimum waveform length | 32 Sa |
Number of RF outputs | 1 |
Frequency range | 0.5 - 8.5 GHz |
Signal bandwidth | > 1 GHz |
Output ranges (dBm) | -30 dBm to 10 dBm |
Output voltage noise | 14.1 nV/sqrt(Hz) (@ 6 GHz) |
Output impedance | 50 Ohm |
Number of synthesizers | 1 (shared with input channel) |
D/A conversion | 14-bit, 6 GSa/s (after internal 3x interpolation) |
Output voltage noise density | -135 dBm/Hz (1 GHz, 10 dBm, offset > 200 kHz) -140 dBm/Hz (4 GHz, 10 dBm, offset > 200 kHz) -144 dBm/Hz (6 GHz, 10 dBm, offset > 200 kHz) -144 dBm/Hz (8 GHz, 10 dBm, offset > 200 kHz) |
Output phase noise | -90 dBc/Hz (6 GHz, carrier offset 1 kHz) -98 dBc/Hz (6 GHz, carrier offset 10 kHz) -100 dBc/Hz (6 GHz, carrier offset 100 kHz) |
Output level accuracy | ±(1 dBm of setting) |
Spurious-free dynamic range (excl. harmonics) | 74 dBc (1 GHz, 0 dBm) 66 dBc (4 GHz, 0 dBm) 60 dBc (6 GHz, 0 dBm) 65 dBc (8 GHz, 0 dBm) |
Output worst harmonic component | -40 dBc (1 GHz, 10 dBm) -40 dBc (4 GHz, 10 dBm) -38 dBc (6 GHz, 10 dBm) -36 dBc (8 GHz, 10 dBm) |
Number of readout pulse generator | 1 |
Sequencing capability | Advanced sequencing (loop, branching), command table, advanced trigger control, staggered readout |
Waveform memory blocks1 |
32 kSa total memory in 8 blocks |
Oscillators | 1 (accessible in spectroscopy mode) |
Number of RF inputs | 1 |
Frequency range | 0.5 - 8.5 GHz |
Signal bandwidth | > 1 GHz |
Output impedance | 50 Ohm |
Number of synthesizers | 1 (shared with output channel) |
Input voltage noise | 1.1 nV/√Hz (@ 3 GHz) |
Input ranges (dBm) | -50 dBm to 10 dBm (calib.) |
A/D conversion | 14-bit, 4 GSa/s |
Matched filters |
32 kSa total memory per channel in 8 blocks1 |
Multistate discrimination | Up to 4 discriminators |
Feedback latency | 350 ns (last sample in to first sample out) |
Data logger | Memory: 220 samples, max. 217 averages |
Monitor scope | Memory: 219 complex samples when monitoring 1 channel, 218 samples when monitoring 2 channels, 217 samples when monitoring 3 to 4 channels Averaging: Max. 216 averages |
Marker outputs | 1 per input/output channel, SMA on front panel |
Marker output voltages | 0 V (low), 3.3 V (high) |
Marker output impedance | 50 Ohm |
Marker output rise time | 300 ps (20% to 80%) |
Trigger inputs | 1 per input/output channel, SMA on front panel |
Trigger input impedance | 50 Ohm / 1 kOhm |
1 All memory blocks are freely configurable and triggerable. One block corresponds to 4096 complex-valued samples.