簡介
SHFQA
Zurich Instruments 的SHFQA 量子分析儀,作為獨立單體儀器,具備完整的即時量子態讀取功能,最多可讀取高達64 個超導和自旋量子位元。SHFQA的頻率範圍為0.5 - 8.5 GHz,分析頻寬為1 GHz,且無需混頻器校準。SHFQA 具有2 個或4 個讀取通道,每個通道均可以分析多達16 個量子位元,8 個qutrit 或5 個quaquad。對於2 通道SHFQA,此功能需要配備SHFQA-16W選配件。
SHFQA 憑藉其先進的定序器和低延遲信號處理鏈,包含匹配濾波和結果關聯運算,能夠以最佳的信噪比和最低的延遲實現多量子態鑑別。SHFQA 可以將數據即時傳輸到其他儀器,以實現有效的qubit 復位或全局糾錯協議。通過作用包括用戶界面,應用程序接口(API) 和LabOne QCCS 控制軟體的LabOne軟體組件,SHFQA 可支持規模從幾個至幾百個量子位元的量子計算系統。
應用
量子計算應用
支援的量子位元類型
其他應用
特色
高保真度快速讀取
SHFQA 通過脈衝測量方式來確定被測設備的傳輸幅度和相位。SHFQA 通過兩種方法最大化信噪比(SNR):脈衝整形和匹配濾波。使用任意波形產生器進行脈衝整形,即使對於響應速度較慢的設備,也可以最大程度地縮短振鈴時間。
通過為每個濾波器設置一個可編程的,4 kSa 長的權重函數,SHFQA 可以使其數字濾波器的階躍響應與待測器件的瞬態響應匹配。與簡單的未加權積分相比,應用合適匹配濾波器可顯著提高SNR。此外,即時信號分析鏈還可以鑑別單個量子位元的多量子態(多達4 個量子態),且直接獲得量子態的關聯結果。
可擴展的量子位元讀取儀器
在一條微波線上測量16 個 qubit 或8 個qutrits 意味著優化低溫放大器鏈路。使用可自由配置的權重積分大大降低了量子位元間的串擾,因此降低了對了器件製造容差的要求。任意波形產生器中的儲存模塊(最多16 個) 可以按時間交錯方式讀取和触發qubit,qutrit 或quaquad 的讀取。用戶可以選擇2 或4 個讀出通道,並將2 通道版本的積分器的數目從8 個擴展到16 個,即,用戶可以根據特定的系統要求定制儀器。
為了實現高集成度,SHFQA 可以與其他儀器共用操作界面,例如,低延遲32 位DIO VHDCI 接口可將多量子位元的量子態前饋到幾個 HDAWG,以實現快速有效的量子位元復位。對於多量子位元系統,可以通過將多個SHFQA,SHFSG,HDAWG,HDIQ 和 PQSC 組合在一起,以形成可擴展的量子計算控制系統 (QCCS)。Zurich Instruments 的ZSync 接口可通過中央PQSC 將SHFQA 連接到QCCS 中的所有其他儀器,這對於全局糾錯協議具有至關重要的意義。
無需混頻器校準的頻率上轉換,高達 8.5 GHz
當讀取耦合至相同諧振腔的多個量子位元的量子態時,如果頻率設置點未經優化,即使雜散很小,也可能導致量子態讀取的串擾或讀出信號過小。由於SHFQA 的雙超外差上變頻方案採用的是濾波而不是干涉的方法,因此頻帶更寬,相對於標準的IQ 混頻方案其線性度更優。SHFQA 即使只用於輸出單一頻率,其雜散也低於使用標準的IQ 混頻方案,因此可實現開機即用。SHFQA 的突出特點在於,性能穩定且不需要繁瑣的混頻器校準。這種混頻方案與1 GHz 的分析頻寬相結合, 顯著提高了設計用於頻率復用量子態讀取的諧振腔共振頻率的靈活性;這一方案極大簡化了系統的調試和維護。
量子系統控制軟體
LabOne QCCS 控制軟體是 QCCS 的重要組成部分,它可以將SHFQA 完全整合到新的或現有的設備。SHFQA 作為獨立的儀器,可以完全通過 LabOne 和 API (Python,C,MATLAB ®,LabVIEW™ 和.NET 進行操控。擴展的示例庫將使用戶更輕鬆地將SHFQA 整合到已有的測量框架。LabOne 數據服務器提供的強大的數據結構和數據處理功能,使軟體堆棧中與用戶交互的部分既簡單直觀,又易維護。
訊號輸入
RF 輸入通道數量 |
2 或 4 |
頻率範圍 |
0.5 - 8.5 GHz |
訊號頻寬 |
1 GHz |
輸入阻抗 |
50 歐姆 |
輸入電壓雜訊 |
4 nV /√Hz(@ 3 GHz) |
輸入範圍(dBm) |
-50 至10 dBm(校準) |
A/D 轉換 |
14位,4 GSa/s |
量子比特測量單元
匹配濾波器 |
4 通道選項:16 個複數濾波器/讀出通道 |
多量子態鑒別 |
最多 4 個鑒別器 |
資料記錄儀 |
存儲容量:219 個樣本,最多 216 次平均 |
訊號監視器 |
存儲容量:監視 1 個通道時 218 個複數樣本,監視 2 個通道時 217 個樣本,監視 3 或 4 個通道時 216 個樣本 |
訊號輸出
RF 輸出通道數 |
2 或 4 |
頻率範圍 |
0.5 - 8.5 GHz |
訊號頻寬 |
1.0 GHz |
輸出阻抗 |
50 歐姆 |
輸出電壓雜訊 |
14.1 nV /√Hz (@ 6 GHz) |
輸出範圍 (dBm) |
-30 dBm 至 +10 dBm (校準) |
數模轉換 |
14位,6 GSa/s |
讀出脈衝產生器
任意波形產生器數量 |
每個讀出通道 1 個(總共 2 個或 4 個) |
時序功能 |
高級時序(迴圈,分支),命令表,高級觸發控制 (交錯讀取功能) |
波形記憶體模組1 |
4 通道配置:每通道總容量 64 kSa,即 16 個單元,每單元 4 kSa |
振盪器 |
所有讀出通道共用 1 個振盪器,振盪器的頻率和相位即時可控。僅用於頻譜 (Spectroscopy) 模式。 |
標記輸出通道數 |
2 |
觸發輸入通道數 |
2 |
一般規格
讀出通道數 |
2 或 4 |
外型尺寸 |
449 x 460 x 145 毫米(19 英寸機架) |
重量 |
15公斤(33 磅) |
電源供應 |
交流電:100 - 240 V,50/60 Hz |
連接器 |
前後面板上的 SMA 用於觸發,訊號和外部時鐘 |
1 所有波形存儲模組均可自由配置和觸發。
The Zurich Instruments SHFQA Quantum Analyzer integrates in a single instrument a full real-time readout setup for up to 64 superconducting and spin qubits. The SHFQA operates in a frequency range from 0.5 to 8.5 GHz with a clean analysis bandwidth of 1 GHz and without the need for mixer calibration. Each of its 2 or 4 readout channels can analyze up to 16 qubits, 8 qutrits or 5 ququads. For the 2-channel instrument, this performance requires the SHFQA-16W option.
The SHFQA enables multi-state discrimination with optimal signal-to-noise ratio and minimal latency thanks to its advanced sequencer and its low-latency signal processing chain with matched filters and result correlation. The data are transmitted in real time to other instruments for active qubit reset or global error correction protocols. Controlled through the LabOne software suite comprising the user interface, several APIs and the LabOne QCCS control software, the SHFQA supports quantum computing projects with sizes ranging from a few to several hundreds of qubits.
Applications
Quantum computing applications
Supported qubit types
Other applications
Highlights
Fast readout with high fidelity
Zurich Instruments SHFQA Quantum Analyzer analysis chain
The SHFQA performs pulsed measurements to determine the transmission amplitude and phase of the device under test. There are two methods to maximize the signal-to-noise ratio (SNR): pulse shaping and matched filtering. Pulse shaping with an arbitrary waveform generator minimizes the ring-up and ring-down time even for a device with a slow response.
The step response of the SHFQA's digital filters can be matched to the transient response of the device by programming a 4-kSa-long weight function for each filter. Compared to a simple, unweighted integration, applying a properly matched filter significantly improves the SNR. In addition, the real-time analysis chain makes it possible to discriminate up to 4 states per qubit and to correlate the qubit results.
Scalable quantum setup
Measuring 16 qubits or 8 qutrits on a single microwave line means optimizing the cryogenic amplification chain. The freely configurable integration weights reduce qubit crosstalk and, consequently, relax tolerances in device fabrication. The memory blocks (up to 16) in the arbitrary waveform generator enable the readout and trigger readout of the qubits, qutrits or ququads in a time-staggered manner. The possibility to choose 2 or 4 readout channels, and to extend the number of integration weights from 8 to 16 for the 2-channel version (with the SHFQA-16W option), means that users can tailor the instrument to their specific system requirements.
For maximum integration, the SHFQA can be efficiently interfaced with other instruments too. For example, the low-latency 32-bit DIO VHDCI interface enables feed-forward of the multi-qubit state to a few HDAWGs for fast active qubit reset. For systems with larger qubit counts, several SHFQAs, SHFSGs, HDAWGs, and a PQSC can be combined to form a scalable Quantum Computing Control System (QCCS). The Zurich Instruments ZSync interface links the SHFQA to all other instruments in the QCCS through the central PQSC, which is especially important for global error correction protocols.
Clean and calibration-free frequency conversion to 8.5 GHz
When reading out multiple qubits through resonators coupled to the same readout line, even small spurs can lead to a confusing or smaller readout signal if they are sub-optimally located. As the SHFQA's double superheterodyne up- and down-conversion scheme up to 8.5 GHz relies on filtering rather than on interference, it performs over a wider frequency band and with better linearity than standard IQ-mixer-based conversion. As a result, even a single tone can be generated with fewer spurs and straight out of the box. Importantly, the performance is stable and does not require tedious mixer calibrations. This approach, combined with an analysis bandwidth of 1 GHz, affords more flexibility when designing the resonator frequencies for frequency-multiplexed qubit readout; it also simplifies greatly the system's tune-up and maintenance.
Quantum system control software
As part of our Quantum Computing Control System, the SHFQA can be fully integrated into new or existing setups using the LabOne QCCS control software. As a standalone unit, it can be controlled with LabOne and its APIs for Python, C, MATLAB®, LabVIEW™ and .NET. An extended example library facilitates integration into established measurement frameworks. Thanks to the data structuring and processing functionality offered by the LabOne Data Server, the user portion of the software stack remains simple and easy to maintain.
Number of RF inputs | 2 or 4 |
Frequency range | 0.5 - 8.5 GHz |
Signal bandwidth | 1 GHz |
Input impedance | 50 Ohm |
Input voltage noise | 4 nV/√Hz (@ 3 GHz) |
Input ranges (dBm) | -50 dBm to 10 dBm (calib.) |
A/D conversion | 14-bit, 4 GSa/s |
Matched filters | 16 complex filters/readout channel for 4-channel instrument 8 complex filters/readout channel for 2-channel instrument (extended to 16 with SHFQA-16W option) 4096 memory samples per filter and quadrature |
Multistate discrimination | Up to 4 discriminators |
Data logger | Memory: 219 samples, max. 217 averages |
Scope | Memory: 218 complex samples when monitoring 1 channel, 217 samples when monitoring 2 channels, 216 samples when monitoring 3 to 4 channels Averaging: Max. 216 averages |
Number of RF outputs | 2 or 4 |
Frequency range | 0.5 - 8.5 GHz |
Signal bandwidth | 1.0 GHz |
Output impedance | 50 Ohm |
Output voltage noise | 14.1 nV/√Hz @ 6 GHz |
Output ranges (dBm) | -30 dBm to +10 dBm (calib.) |
D/A conversion | 14-bit, 6 GSa/s |
Number of arbitrary waveform generators | 1 per readout channel (2 or 4 in total) |
Sequencing capability | Advanced sequencing (loop, branching), command table, advanced trigger control (staggered readout capability) |
Waveform memory blocks1 | For 4-channel instrument: 64 kSa total memory per channel in 16 blocks of 4 kSa For 2-channel instrument: 32 kSa total memory per channel in 8 blocks of 4 kSa For 2-channel instrument (with SHFQA-16W option): 64 kSa total memory per channel in 16 blocks of 4 kSa |
Oscillators | 1 oscillator with real-time frequency and phase control shared between all readout channels. Accessible in spectroscopy mode |
Markers outputs | 2 |
Trigger inputs | 2 |
Number of readout channels | 2 or 4 |
Dimensions | 449 x 460 x 145 mm (19" rack) 17.6 x 18.1 x 5.7 inch |
Weight | 15 kg (33 lb) |
Power supply | AC: 100-240 V, 50/60 Hz |
Connectors | SMA on front and back panel for trigger, signals and external clock 32-bit DIO 2 ZSync LAN/Ethernet, 1 Gbit/s USB 3.0 Maintenance USB |
1 All memory blocks are freely configurable and triggerable.